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Background

Problem: There is no analytical solution for all real 
problems.

TFAWS 2017 – August 21-25, 2017 2

• Simplified Model equation; i.e: 1D Linear wave equation

Initial condition:

Analytical solution:
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• 3-D Navier Stoke Equations (NSE)

(1)

(2)

(3)



Background

TFAWS 2017 – August 21-25, 2017 4

Boundary Conditions:

Initial Conditions:
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Numerical solution= f(Δx, Δt, Numerical Scheme)

Errors !
CFD Challenges

Thermal Fluid
Navier-Stokes 

Equations
Challenges and 

limitations

Challenges &
limitations

1. No general analytical solution
2. Different discretization techniques
3. Different numerical techniques
4. BC & IC are required
5. Errors in each stage
6. Interpretation of the numerical dataset
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Ultimate Objectives

1. The NSE must be used for a wide class of problem with 
minimum user inputs/interactions (tweaking)

2. Solution must adequately capture the flow physics

3. Implement cutting edge parallel libraries to study 
complex problems fast and accurately
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Generalized CFD Problem

1.-John, D. Anderson JR. "Computational fluid dynamics: the basics with applications." P. Perback, International ed., Published (1995).

Fig.1. Schematic of the flow field over a supersonic blunt nosed body 1
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Generalized CFD Problem
Boundary

Boundary

BoundaryBoundary

Fig.2. Computational representation of a supersonic blunt nosed body 1



Flow Physics Extraction Functions 
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1. Gradient of density (normal)
2. Normal Mach number
3. Magnitude of the gradient of entropy
4. Q Criterion



Flow Physics Extraction Functions 
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Method based on flow property gradient
Pagendarm et al. 1993 proposed a shock detection method based on 
the gradient of density in the direction of velocity.

Positive values correspond to shock waves, while negative values 
correspond to expansion waves.

(4)
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Method based on normal Mach number
Lovely et al. 1999 proposed a shock detection method based on the 
local pressure gradient.

This parameter captures shock waves only.

(5)



Flow Physics Extraction Functions 
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Ziniu et al. 2013, Lovely et al. 1999 and Ma et al. 1996 concluded that 
both parameters may produce false or incomplete results due to 
numerical errors. 

𝑑𝜌 𝑑𝑛⁄ > 𝜖 (6)

'
𝛻𝑝	 + 𝜂
𝛻𝑝	 ≤ 𝑐

𝛻𝑝	 ≥ 𝛻𝑝	 0 = 𝜂 𝛻𝑝	 234
(7)

Gradient of 
density:

Normal Mach:
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Method relating thermodynamics properties and fluid kinematics
Crocco 1937 found that an irrotational flow is isentropic and 
homenergic.

(8)
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Flow Physics Extraction Functions 
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Method based on fluid kinematics
Hunt et al. 1988 found that identifying regions in a flow can provide 
important method for analysis the dynamics of the flow. 

(10)
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Hypersonic flow over a flat plate

Figure 3. Illustration of the flat plate problem2 Figure 4. Computational representation 

2.- Pletcher, R. H., Tannehill, J. C., & Anderson, D. (2012). Computational fluid mechanics and heat transfer: CRC Press.

Challenges
1. Transition from laminar and turbulence
2. Viscous – Inviscid interaction
3. From Kinetic theory to continuum
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Hypersonic flow over a flat plate

Property (Freestream) Value

Mach 8.6

Gamma and Prandtl 1.4 ; 0.70

Density 0.022497 (kg/m3)

Temperature 360 (K)

Viscosity 2.117x10-5 (k/ms)

ReL 3.47577x106

Length 1.0 (m)

Height 0.5 (m)
Figure 4. Computational representation 
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Hypersonic flow over a flat plate

Figure 5. U-Velocity distribution at 0.5*L Figure 6. V-Velocity distribution at 0.5*L 

Figure 7. Density distribution at 0.5*L Figure 8. Temperature distribution at 0.5*L 
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Hypersonic flow over a flat plate

Figure 9. Density Contour Figure 10. “U” Velocity Contour

Figure 11. “V” Velocity contour Figure 12. Temperature distribution at 0.5*L 
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Hypersonic flow over a flat plate

Figure 13. Normal Mach number contour

Figure 14. Q-Criterion Contour
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Hypersonic flow over a flat plate

Figure 15. Density Gradient magnitude

Figure 16. Normal density gradient
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Hypersonic flow over a flat plate

Figure 17. Q criterion (Leading-edge tip)

Figure 18. Q criterion (X=0.27) Figure 19. Vorticity (X=0.27)
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Hypersonic flow cross jet interaction

Figure 20. Illustration of the flat plate problem3 Figure 21. Computational representation 

3.- M. Gruber, A. Nejad, T. Chen and J. Dutton, Journal of Propulsion and Power 11 (2), 315-323 (1995)

Challenges
1. Separation and reattachment of the boundary layer
2. Different vortical structures that enhance mixing 
3. Complex shock structure that interacts with the flow field
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Hypersonic flow cross jet interaction

Property (Freestream) Value

Mach 6.0

Gamma and Prandtl 1.4 ; 0.789

Density 0.090 (kg/m3)

Temperature 57.23 (K)

Viscosity 3.7655x10-5 (k/ms)

ReL 1.3047x107

Length 0.6 (m)

Height 0.12 (m)

Figure 21. Computational representation 
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Hypersonic flow cross jet interaction

Figure 22. “V” Velocity Contour with vectors Figure 23. V-Velocity distribution at 0.433
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Hypersonic flow cross jet interaction

Figure 24. “V” Velocity Contour with stream tracers Figure 25. U-Velocity distribution at 0.433 
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Hypersonic flow cross jet interaction

Figure 26. “U” Velocity Contour with stream tracers

Figure 27. U-Velocity Contour ahead the injection
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Hypersonic flow cross jet interaction

Figure 28. Q-criterion

Figure 29. Normal Mach number Contour
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Hypersonic flow cross jet interaction

Figure 30. Q-criterion

Figure 31. Magnitude of Entropy gradient
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Conclusions and future works

ü A new scheme for solving the 2D Navier Stokes Equations was validated 
using FPEF and cutting edge parallel libraries

ü The IDS has the capabilities of predicting the detailed physics within 
complex flow fields

ü In all cases the results showed very good agreement with the physical 
expectations of the flow interactions

ü A set of FPEF functions is required evaluate a given flow field as some 
FPEF may require Filtering

ü Future Effort: Extension of the IDS to arbitrary geometries is recommend 
(Under current development)

ü Future Effort: Extend the Parallel version to 3D 


